
Analysis of Algorithms

CS 1037a – Topic 13



Overview

• Time complexity

- exact count of operations T(n) as a function of input size n

- complexity analysis using O(...) bounds 

- constant time, linear, logarithmic, exponential,… complexities

• Complexity analysis of basic data structures’ operations

• Linear and Binary Search algorithms and their analysis

• Basic Sorting algorithms and their analysis



Related materials

• Sec. 12.1: Linear (serial) search, Binary search

• Sec. 13.1: Selection and Insertion Sort

from Main and Savitch

“Data Structures & other objects using C++”



Analysis of Algorithms

• Efficiency of an algorithm can be 

measured in terms of:

• Execution time (time complexity)

• The amount of memory required (space 

complexity)

• Which measure is more important?

• Answer often depends on the limitations of 

the technology available at time of analysis
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Time Complexity

• For most of the algorithms associated 

with this course, time complexity 

comparisons are more interesting than 

space complexity comparisons

• Time complexity: A measure of the 

amount of time required to execute an 

algorithm
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Time Complexity

• Factors that should not affect time 

complexity analysis:

• The programming language chosen to 

implement the algorithm

• The quality of the compiler

• The speed of the computer on which the 

algorithm is to be executed
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Time Complexity

• Time complexity analysis for an 
algorithm is independent of 
programming language,machine used

• Objectives of time complexity analysis:

• To determine the feasibility of an algorithm 
by estimating an upper bound on the 
amount of work performed

• To compare different algorithms before 
deciding on which one to implement
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Time Complexity

• Analysis is based on the amount of 

work done by the algorithm

• Time complexity expresses the 

relationship between the size of the 

input and the run time for the algorithm

• Usually expressed as a proportionality, 

rather than an exact function
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Time Complexity

• To simplify analysis, we sometimes 

ignore work that takes a constant

amount of time, independent of the 

problem input size

• When comparing two algorithms that 

perform the same task, we often just 

concentrate on the differences between 

algorithms
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Time Complexity

• Simplified analysis can be based on:

• Number of arithmetic operations performed

• Number of comparisons made

• Number of times through a critical loop

• Number of array elements accessed

• etc
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Example: Polynomial Evaluation
Suppose that exponentiation is carried out using 

multiplications. Two ways to evaluate the 

polynomial

p(x) = 4x4 + 7x3 – 2x2 + 3x1 + 6

are: 

Brute force method:

p(x) = 4*x*x*x*x + 7*x*x*x – 2*x*x + 3*x + 6

Horner’s method:

p(x) = (((4*x + 7) * x – 2) * x + 3) * x + 6
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Example: Polynomial Evaluation
Method of analysis:

• Basic operations are multiplication, addition, and 

subtraction

• We’ll only consider the number of multiplications, 

since the number of additions and subtractions are 

the same in each solution

• We’ll examine the general form of a polynomial of 

degree n, and express our result in terms of n

• We’ll look at the worst case (max number of 

multiplications) to get an upper bound on the work
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Example: Polynomial Evaluation

General form of polynomial is

p(x) = anx
n + an-1x

n-1 + an-2x
n-2 + … + a1x

1 + a0

where an is non-zero for all n >= 0
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Example: Polynomial Evaluation
Analysis for Brute Force Method:

p(x) = an * x * x * … * x * x  +          n multiplications

a n-1 * x * x * … * x * x  +        n-1 multiplications

a n-2 * x * x * … * x * x  +        n-2 multiplications

… +                                        …

a2 * x * x +                             2 multiplications

a1 * x +                                  1 multiplication

a0
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Example: Polynomial Evaluation
Number of multiplications needed in the worst case is

T(n) = n + n-1 + n-2 + … + 3 + 2 + 1

= n(n + 1)/2        (result from high school math **)

= n2/2 + n/2

This is an exact formula for the maximum number of 

multiplications. In general though, analyses yield 

upper bounds rather than exact formulae. We say that 

the number of multiplications is on the order of n2, or 

O(n2). (Think of this as being proportional to n2.)

(** We’ll give a proof for this result a bit later)

13-15



Example: Polynomial Evaluation
Analysis for Horner’s Method:

p(x) = ( … ((( an * x +            1 multiplication

an-1) * x +        1 multiplication

an-2) * x +        1 multiplication

… +                                                n times

a2) * x +          1 multiplication

a1) * x +          1 multiplication

a0

T(n) = n, so the number of multiplications is O(n)
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Example: Polynomial Evaluation

n 

(Horner)

n2/2 + n/2 

(brute force)

n2

5 15 25

10 55 100

20 210 400

100 5050 10000

1000 500500 1000000
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Example: Polynomial Evaluation
600

500

400

300

200

100

3530252015105

g(n) = n

T(n) = n2/2 + n/2

f(n) = n2

# of mult’s

n (degree of polynomial) 13-18



Sum of First n Natural Numbers

Write down the terms of the sum in forward and reverse 

orders; there are n terms:

T(n) =  1 +   2     +   3    + … + (n-2) + (n-1) + n

T(n) =  n + (n-1) + (n-2) + … +   3    +    2    + 1

Add the terms in the boxes to get:

2*T(n) = (n+1) + (n+1) + (n+1) + … + (n+1) + (n+1) + (n+1)

= n(n+1)

Therefore, T(n) = (n*(n+1))/2 = n2/2 + n/2
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Big-O Notation

• Formally, the time complexity T(n) of an 

algorithm is O(f(n)) (of the order f(n)) if, for 

some positive constants C1 and C2 for all but 

finitely many values of n

C1*f(n)   ≤ T(n) ≤ C2*f(n)

• This gives upper and lower bounds on the 

amount of work done for all sufficiently large n
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Big-O Notation

Example: Brute force method for polynomial 

evaluation: We chose the highest-order term of 

the expression T(n) = n2/2 + n/2, with a 

coefficient of 1, so that f(n) = n2.

T(n)/n2 approaches 1/2 for large n, so T(n) is 

approximately n2/2.

n2/2 <= T(n) <= n2

so T(n) is O(n2).

13-21



Big-O Notation

• We want an easily recognized 

elementary function to describe the 

performance of the algorithm, so we use 

the dominant term of T(n): it determines 

the basic shape of the function
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Worst Case vs. Average Case

• Worst case analysis is used to find an 

upper bound on algorithm performance 

for large problems (large n)

• Average case analysis determines the 

average (or expected) performance

• Worst case time complexity is usually 

simpler to work out
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Big-O Analysis in General

• With independent nested loops: The 
number of iterations of the inner loop is 
independent of the number of iterations 
of the outer loop

• Example:

int x = 0;

for ( int j = 1; j <= n/2; j++ )

for ( int k = 1; k <= n*n; k++ )

x = x + j + k;

Outer loop executes n/2 times. 

For each of those times, inner 

loop executes n2 times, so the 

body of the inner loop is 

executed (n/2)*n2 = n3/2 times. 

The algorithm is O(n3) .
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Big-O Analysis in General

• With dependent nested loops: Number 

of iterations of the inner loop depends 

on a value from the outer loop

• Example:

int x = 0;

for ( int j = 1; j <= n; j++ )

for ( int k = 1; k < 3*j; k++ )

x = x + j;

When j is 1, inner loop executes 3

times; when j is 2, inner loop executes 

3*2 times; … when j is n, inner loop 

executes 3*n times. In all the inner loop 

executes 3+6+9+…+3n = 

3(1+2+3+…+n) = 3n2/2 + 3n/2 times. 

The algorithm is O(n2).
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Big-O Analysis in General

f(n) n=103 n=105 n=106

log2(n) 10-5 sec 1.7 * 10-5 sec 2 * 10-5 sec

n 10-3 sec 0.1 sec 1 sec

n*log2(n) 0.01 sec 1.7 sec 20 sec

n2 1 sec 3 hr 12 days

n3 17 min 32 yr 317 centuries

2n 10285 centuries 1010000 years 10100000 years

Assume that a computer executes a million instructions a second. 

This chart summarizes the amount of time required to execute f(n)

instructions on this machine for various values of n.
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Big-O Analysis in General

• To determine the time complexity of an 

algorithm:

• Express the amount of work done as a 

sum f1(n) + f2(n) + … + fk(n)

• Identify the dominant term: the fi such that 

fj is O(fi) and for k different from j

fk (n) < fj (n) (for all sufficiently large n)

• Then the time complexity is O(fi)
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Big-O Analysis in General

• Examples of dominant terms:

n dominates log2(n)

n*log2(n) dominates n

n2 dominates n*log2(n)

nm dominates nk when m > k

an dominates nm for any a > 1 and m >= 0

• That is, log2(n) < n < n*log2(n) < n2 < … 

< nm < an for a >= 1 and m > 2
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Intractable problems

• A problem is said to be intractable if 

solving it by computer is impractical

• Example: Algorithms with time 

complexity O(2n) take too long to solve 

even for moderate values of n; a 

machine that executes 100 million 

instructions per second can execute 260

instructions in about 365 years
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Constant Time Complexity

• Algorithms whose solutions are independent 

of the size of the problem’s inputs are said 

to have constant time complexity

• Constant time complexity is denoted as O(1)
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Time Complexities for Data Structure 

Operations

• Many operations on the data structures 

we’ve seen so far are clearly O(1): 

retrieving the size, testing emptiness, etc

• We can often recognize the time 

complexity of an operation that modifies 

the data structure without a formal proof
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Time Complexities for Array 

Operations

• Array elements are stored contiguously 

in memory, so the time required to 

compute the memory address of an 

array element arr[k] is independent of the 

array’s size: It’s the start address of arr

plus k * (size of an individual element)

• So, storing and retrieving array elements 

are O(1) operations
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Time Complexities for Array-Based 

List Operations

• Assume an n-element List (Topic 8):

• insert operation is O(n) in the worst case, 

which is adding to the first location: all n

elements in the array have to be shifted one 

place to the right before the new element can 

be added

13-33



Time Complexities for Array-Based 

List Operations

• Inserting into a full List is also O(n):

• replaceContainer copies array contents 

from the old array to a new one (O(n))

• All other activies (allocating the new array, 

deleting the old one, etc) are O(1)

• Replacing the array and then inserting at 

the beginning requires O(n) + O(n) time, 

which is O(n)

13-34



Time Complexities for Array-Based 

List Operations

• remove operation is O(n) in the worst case, 

which is removing from the first location: n-1

array elements must be shifted one place left

• retrieve, replace, and swap operations are O(1): 

array indexing allows direct access to an array 

location, independent of the array size; no 

shifting occurs

• find is O(n) because the entire list has to be 

searched in the worst case
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Time Complexities for Linked List 

Operations

• Singly linked list with n nodes:

• addHead, removeHead, and retrieveHead
are all O(1)

• addTail and retrieveTail are O(1) provided 
that the implementation has a tail 
reference; otherwise, they’re O(n)

• removeTail is O(n): need to traverse to the 
second-last node so that its reference can 
be reset to NULL
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Time Complexities for Linked List 

Operations

• Singly linked list with n nodes (cont’d):

• Operations to access an item by position 

(add , retrieve, remove(unsigned int k),

replace) are O(n): need to traverse the 

whole list in the worst case

• Operations to access an item by its value 

(find, remove(Item item)) are O(n) for the 

same reason
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Time Complexities for Linked List 

Operations 

• Doubly-linked list with n nodes:

• Same as for singly-linked lists, except that all head 

and tail operations, including removeTail, are O(1)

• Ordered linked list with n nodes:

• Comparable operations to those found in the linked 

list class have the same time complexities

• add(Item item) operation is O(n): may have to 

traverse the whole list
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Time Complexities for Bag 

Operations

• Assume the bag contains n items, then 

• add: 

• O(1) for our array-based implementation: 
new item is added to the end of the array

• If the bag can grow arbitrarily large (i.e.: if 
we replace the underlying array), adding to 
a “full” bag is O(n)

• Also O(1) if we add to end of an array-
based list, or head or tail of a linked list
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Time Complexities for Bag 

Operations

• getOne: 

• Must be careful to ensure that it is O(1) if 
we use an underlying array or array-based 
list

• Don’t shift array or list contents

• Retrieve the kth item, copy the nth item into 
the kth position, and remove the nth item

• Worst case is O(n) for any linked list 
implementation: requires list traversal
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Time Complexities for Bag 

Operations

• Copy constructor for Bags (Topic 4, slide 4-33): 

• Algorithm is O(n) where n is the number of 
items copied

• But, copying the underlying items may not be 
an O(1) task: it depends on the kind of item 
being copied

• For class Bag<Item>: if copying an underlying 
item is O(m), then the time complexity for the 
copy constructor is O(n*m)
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Time Complexities for Stack 

Operations

• Stack using an underlying array:

• All operations are O(1), provided that the 
top of the stack is always at the highest 
index currently in use: no shifting required

• Stack using an array-based list:

• All operations O(1), provided that the tail of 
the list is the top of the stack

• Exception: push is O(n) if the array size 
has to double
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Time Complexities for Stack 

Operations

• Stack using an underlying linked list:

• All operations are, or should be, O(1)

• Top of stack is the head of the linked list

• If a doubly-linked list with a tail pointer is 

used, the top of the stack can be the tail of 

the list
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Time Complexities for Queue 

Operations

• Queue using an underlying array-based list:

• peek is O(1)

• enqueue is O(1) unless the array size has to 

be increased (in which case it’s O(n))

• dequeue is O(n) : all the remaining elements 

have to be shifted
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Time Complexities for Queue 

Operations

• Queue using an underlying linked list:

• As long as we have both a head and a tail 

pointer in the linked list, all operations are O(1)

• important:   enqueue() should use addTail()    

dequeue() should use removeHead()

Why not the other way around? 

• No need for the list to be doubly-linked
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Time Complexities for Queue 

Operations

• Circular queue using an underlying array:

• All operations are O(1)

• If we revise the code so that the queue can 

be arbitrarily large, enqueue is O(n) on those 

occasions when the underlying array has to 

be replaced
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Time Complexities for OrderedList

Operations

OrderedList with array-based m_container:

• Our implementation of insert(item) (see slide 10-12)

uses “linear search” that traverses the list 

from its beginning until the right spot for the 

new item is found – linear complexity O(n)

• Operation remove(int pos) is also  O(n) since 

items have to be shifted in the array
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Basic Search Algorithms and 

their Complexity Analysis
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Linear Search: Example 1 

• The problem: Search an array a of size n to 

determine whether the array contains the 

value key; return index if found, -1 if not found

Set k to 0.

While (k < n) and (a[k] is not key) 

Add 1 to k.

If k == n  Return –1.

Return k.
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Linear Search: Example 2 

“find” in Array Based List

template <class Item>  template <class Equality>

int List<Item>::find(Item key) const   {

for (int k = 1; k<= getLength(); i++) 

if ( Equality::compare(m_container[k], key)  )   return k;

return –1;       

}                                                                         

// this extra function requires additional templated 

// argument for a comparison functor whose method 

// compare checks two items for equality (as in slide 11-79) 
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int main()   {   

List<int> mylist; 

… // code adding some ints into mylist

cout << mylist.find<IsEqual>(5);

}

Example of using LinearSearch

Additional templated argument for function 

find() should be specified in your code
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Analysis of Linear Search

• Total amount of work done:

• Before loop: a constant amount a

• Each time through loop: 2 comparisons, an 
and operation, and an addition: a constant 
amount of work b

• After loop: a constant amount c

• In worst case, we examine all n array 
locations, so T(n) = a +b*n + c = b*n + d, 
where d = a+c, and time complexity is O(n)
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Analysis of Linear Search

• Simpler (less formal) analysis:

• Note that work done before and after loop is 

independent of n, and work done during a 

single execution of loop is independent of n

• In worst case, loop will be executed n times, 

so amount of work done is proportional to n, 

and algorithm is O(n)

13-53



Analysis of Linear Search

• Average case for a successful search:

• Probability of key being found at index k is 

1 in n for each value of k

• Add up the amount of work done in each 

case, and divide by total number of cases:

((a*1+d) + (a*2+d) + (a*3+d) + … + (a*n+d))/n

= (n*d + a*(1+2+3+ … +n))/n

= n*d/n + a*(n*(n+1)/2)/n = d + a*n/2 + a/2 = (a/2)*n + e, 

where constant e=d+a/2, so expected case is also O(n)
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Analysis of Linear Search

• Simpler approach to expected case:

• Add up the number of times the loop is 

executed in each of the n cases, and divide 

by the number of cases n

• (1+2+3+ … +(n-1)+n)/n = (n*(n+1)/2)/n = 

n/2 + 1/2; algorithm is therefore O(n)
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Linear Search for LinkedList

• Linear search can be also done for LinkedList

• exercise: write code for function

• Complexity of function find(key) for class 

LinkedList should also be O(n)
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Binary Search 
(on sorted arrays)

• General case: search a sorted array a
of size n looking for the value key

• Divide and conquer approach:

• Compute the middle index mid of the array

• If key is found at mid, we’re done

• Otherwise repeat the approach on the half 
of the array that might still contain key

• etc…
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Example: Binary Search For 

Ordered List

template <class Item, class Order>

int OrderedList<Item,Order>::binarySearch(Item key)  const   {

int first = 1,    last = m_container.getLength(); 

while (first <= last) {     // start of while loop

int mid    =  (first+last)/2;

Item val =  retrieve(mid);

if         ( Order::compare(key , val) )     last = mid-1;

else if ( Order::compare(val , key) )    first = mid+1;

else                                                      return  mid;  

}      // end of while loop

return –1;       

}                                                                         

// A new member function for class OrderedList<Item,Order>
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Analysis of Binary Search

• The amount of work done before and 
after the loop is a constant, and 
independent of n

• The amount of work done during a 
single execution of the loop is constant

• Time complexity will therefore be 
proportional to number of times the loop 
is executed, so that’s what we’ll analyze
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Analysis of Binary Search

• Worst case: key is not found in the array

• Each time through the loop, at least half 

of the remaining locations are rejected:

• After first time through, <= n/2 remain

• After second time through, <= n/4 remain

• After third time through, <= n/8 remain

• After kth time through, <= n/2k remain
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Analysis of Binary Search

• Suppose in the worst case that maximum 

number of times through the loop is k; we 

must express k in terms of n

• Exit the do..while loop when number of 

remaining possible locations is less than 

1 (that is, when first > last): this means 

that n/2k < 1
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Analysis of Binary Search

• Also, n/2k-1 >=1; otherwise, looping 

would have stopped after k-1 iterations

• Combining the two inequalities, we get:

n/2k < 1 <= n/2 k-1

• Invert and multiply through by n to get:

2k > n >= 2 k-1
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Analysis of Binary Search

• Next, take base-2 logarithms to get:

k > log2(n) >= k-1

• Which is equivalent to:

log2(n) < k <= log2(n) + 1

• Thus, binary search algorithm is 

O(log2(n)) in terms of the number of 

array locations examined
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Binary vs. Liner Search

13-64
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Improving insert in OrderedList

• Function  insert( item ) for  OrderedList (see slide 10-12) 

can use binary search algorithm (instead of linear search)

when looking for the “right” place for the new item 

inside  m_container (an array-based List)

Question: would worst-case complexity of  

insert improve from O(n) to O(log2(n))?

Answer:  NO!  
we can find the “right” position  k faster, but  m_container.insert(k,item) 

still requires shifting of O(n) items in the underlying array
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Improving insert in OrderedList

Question: would it be possible to improve 

complexity of  insert from O(n) to O(log2(n))

if we used m_container of class LinkedList ?

Answer:  still NO!  
in this case we cannot even do Binary Search efficiently in O(log2(n))

- finding an item in the “middle” of the linked list requires linear traversal

- in contrast, accessing “middle” item in an array is a one step operation

e.g.   m_container[k] or  *(m_container+k) 
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In topic 15 we will study a new data structure 

for storing ordered items (BST) which is 

better than our OrderedList

• operations insert and remove in BST  are

O(log2(n))
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Basic Sorting Algorithms and 

their Complexity Analysis
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Analysis: Selection Sort Algorithm

• Assume we have an unsorted collection 
of n elements in an array or list called 
container; elements are either of a 
simple type, or are pointers to data

• Assume that the elements can be 
compared in size ( <, >, ==, etc)

• Sorting will take place “in place” in
container
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6 4 92 3

2 4 96 3

2 4 96 3

Find smallest element in unsorted 

portion of container

Interchange the smallest element with the 

one at the front of the unsorted portion

Find smallest element in unsorted 

portion of container

2 3 96 4 Interchange the smallest element with the 

one at the front of the unsorted portion

Analysis: Selection Sort Algorithm

- sorted portion of the list

- minimum element in unsorted portion
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Analysis: Selection Sort Algorithm

2 3 96 4 Find smallest element in unsorted 

portion of container

2 3 94 6
Interchange the smallest element with the 

one at the front of the unsorted portion

2 3 94 6 Find smallest element in unsorted 

portion of container

2 3 64 9 Interchange the smallest element with the 

one at the front of the unsorted portion

After n-1 repetitions of this process, the last 

item has automatically fallen into place

- sorted portion of the list

- minimum element in unsorted portion
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Selection Sort for 

(array-based) List

template <class Item> template <class Order>

void List<Item>::selectionSort() {

unsigned int minSoFar, i, k;

for (i = 1; i < getLength(); i++ )   { // „unsorted‟ part starts at given „i‟

minSoFar = i;

for (k = i+1; k <= getLength(); k++)  // searching for min Item inside „unsorted‟

if (  Order::compare(retrieve(k),retrieve(minSoFar))  )  minSoFar = k;

swap( i, minSoFar );   // reminder: “swap” switches Items in 2 given positions

} // end of for-i loop

}

// A new member function for class List<Item>, needs additional template parameter
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int main()   {   

List<int> mylist; 

… // code adding some into list a

mylist.selectionSort<IsLess>();

}

Example of applying 

selectionSort to a list

additional templated argument for 

function selectionSort() should be 

specified in your code
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Analysis: Selection Sort Algorithm

• We’ll determine the time complexity for 

selection sort by counting the number of 

data items examined in sorting an n-

item array or list

• Outer loop is executed n-1 times

• Each time through the outer loop, one 

more item is sorted into position
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Analysis: Selection Sort Algorithm

• On the kth time through the outer loop:

• Sorted portion of container holds k-1 items 

initially, and unsorted portion holds n-k+1

• Position of the first of these is saved in 

minSoFar; data object is not examined

• In the inner loop, the remaining n-k items 

are compared  to the one at minSoFar to 

decide if minSoFar has to be reset
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Analysis: Selection Sort Algorithm

• 2 data objects are examined each time 

through the inner loop

• So, in total, 2*(n-k) data objects are 

examined by the inner loop during the kth

pass through the outer loop

• Two elements may be switched 

following the inner loop, but the data 

values aren’t examined (compared)
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Analysis: Selection Sort Algorithm

• Overall, on the kth time through the 

outer loop, 2*(n-k) objects are examined

• But k ranges from 1 to n-1 (the number 

of times through the outer loop)

• Total number of elements examined is:

T(n) = 2*(n-1) + 2*(n-2) + 2*(n-3) + … + 2*(n-(n-2)) + 2*(n-(n-1))

= 2*((n-1) + (n-2) + (n-3) + … + 2 + 1) (or 2*(sum of first n-1 ints)

= 2*((n-1)*n)/2) = n2 – n, so the algorithm is O(n2)
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Analysis: Selection Sort Algorithm

• This analysis works for both arrays and 

array-based lists, provided that, in the 

list implementation, we either directly 

access array m_container, or use 

retrieve and replace operations (O(1)

operations) rather than insert and remove 
(O(n) operations)
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Analysis: Selection Sort Algorithm

• The algorithm has deterministic complexity 

- the number of operations does not depend on 

specific items, it depends only on the number of 

items

- all possible instances of the problem (“best 

case”, “worst case”, “average case”)  give the 

same number of operations T(n)=n2–n=O(n2)
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Insertion Sort Algorithm

• items are sorted on "insertion", for example

In this case, content of list a is sorted using 

one extra container (not "in place" sorting)

List<int> a;

……………

OrderedList<int> sorted;

while (!a.isEmpty()) sorted.insert( a.popBack() ); // sorting on insertion  

while (!sorted.isEmpty()) a.append( sorted.popBack() );                   

13-80

O(n) complexity operation “insert” 

performed n times inside  “while-loop”

=> overall complexity is O(n2)



Insertion Sort Algorithm

• Same approach can be also implemented in-place

using existing container that is not in order:

• Front item in sequence is a sorted subsequence of 

length 1

• Second item of sequence is “inserted” into the sorted 

subsequence, which is now of length 2

• Process repeats, always inserting the first item from the 

unsorted portion into the sorted subsequence, until the 

entire sequence is in order
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8 5 2 6 9 4 6

Sorted subsequence Value to be 

“inserted”

5 8 2 6 9 4 6

Value 5 is to be inserted where the 8 is; reference to 8 will be 

copied to where the 5 is, the 5 will be put in the vacated position, 

and the sorted subsequence now has length 2

Again, we’re sorting in 

ascending order of int

Insertion Sort Algorithm

- sorted portion of the list

- first element in unsorted portion of the list
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Insertion Sort Algorithm

5 8 2 6 9 4 6

2 5 8 6 9 4 6

2 5 8 6 9 4 6

2 5 6 8 9 4 6

- sorted portion of the list

- first element in unsorted portion of the list
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Insertion Sort Algorithm

2 5 6 8 9 4 6

2 5 6 8 9 4 6

2 5 6 8 9 4 6

2 4 5 6 8 9 6

- sorted portion of the list

- first element in unsorted portion of the list
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Insertion Sort Algorithm

2 4 5 6 8 9 6

2 4 5 6 8 96

We‟re done !

- sorted portion of the list

- first element in unsorted portion of the list
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In-place Insertion Sort For 

Array-Based List

template <class Item> template <class Order>

void List<Item>::insertionSort() {

unsigned int i, k;

for (i = 2; i <= getLength(); i++ )   {  // item „i‟ will move into „sorted‟  

for ( k = i-1; k >0; k--)  {   

if ( Order::compare(  retrieve(k),  retrieve(k+1)  ))    break; 

else  swap(k,k+1);     // shifting  i-th item  “down”  until  the

} // “right” spot in „sorted‟  1 <= k <= (i-1)

}

}                  

// A new member function for class List<Item>, needs additional template parameter



Analysis: Insertion Sort Algorithm

• the worst case complexity of insertionSort() 

is quadratic O(n2)

- in the worst case, for each i we do (i-1) swaps 

inside the inner for-loop

- therefore, overall number of swaps (when i

goes from 2 to n in the outer for-loop) is 

T(n)=1+2+3+…+(i-1)+….+n-1 = n*(n-1)/2 
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Analysis: Insertion Sort Algorithm

• Unlike selection-sort, complexity of 

insertion-sort DOES depend on specific 

instance of the problem (data values)

Exercise: show that the best case complexity is 

(consider the case when the array is already sorted) 

- also, works well also if array is “almost” sorted 

- however, average case complexity will be still O(n2)

13-88
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Radix Sort

• Sorts objects based on some key value 

found within the object

• Most often used when keys are strings 

of the same length, or positive integers 

with the same number of digits

• Uses queues; does not sort “in place”

• Other names: postal sort, bin sort
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Radix Sort Algorithm

• Suppose keys are k-digit integers

• Radix sort uses an array of 10 queues, one 
for each digit 0 through 9

• Each object is placed into the queue whose 
index is the least significant digit (the 1’s digit) 
of the object’s key

• Objects are then dequeued from these 10 
queues, in order 0 through 9, and put back in 
the original queue/list/array container; they’re 
sorted by the last digit of the key
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Radix Sort Algorithm

• Process is repeated, this time using the 10’s digit 

instead of the 1’s digit; values are now sorted by 

last two digits of the key

• Keep repeating, using the 100’s digit, then the 

1000’s digit, then the 10000’s digit, …

• Stop after using the most significant (10n-1’s ) digit

• Objects are now in order in original container
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Algorithm: Radix Sort
Assume n items to be sorted, k digits per key, and t possible values

for a digit of a key, 0 through t-1. (k and t are constants.)

For each of the k digits in a key:

While the queue q is not empty:

Dequeue an element e from q.

Isolate the kth digit from the right in the key for e; call it d.

Enqueue e in the dth queue in the array of queues arr.

For each of the t queues in arr:

While arr[t-1] is not empty

Dequeue an element from arr[t-1] and enqueue it in q.

13-92



Radix Sort Example

Suppose keys are 4-digit numbers using only the digits 0, 1, 2 

and 3, and that we wish to sort the following queue of objects 

whose keys are shown:

3023 1030 2222 1322 3100 1133 2310
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Radix Sort Example

3023

1030

2222 1322

3100

1133

23100

1

2

3

.
Array of queues after 

the first pass

1030 3100 2310 2222 1322 3023 1133

Then, items are moved back to the original queue (first all items from the top 

queue, then from the 2nd, 3rd, and the bottom one):

3023 1030 2222 1322 3100 1133 2310

First pass: while the queue above is not empty, dequeue an item and add it 

into one of the queues below based on the item’s last digit
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Radix Sort Example

3023

1030

2222 1322

3100

1133

2310 Array of queues after 

the second pass

10303100 2310 2222 1322 3023 1133

1030 3100 2310 2222 1322 3023 1133

0

1

2

3

Second pass: while the queue above is not empty, dequeue an item and 

add it into one of the queues below based on the item’s 2nd last digit

Then, items are moved back to the original queue (first all items from the top 

queue, then from the 2nd, 3rd, and the bottom one):

13-95



Radix Sort Example

3023 1030

2222

1322

3100 1133

2310

Array of queues after 

the third pass

1030 3100 23102222 13223023 1133

10303100 2310 2222 1322 3023 1133

0

1

2

3

First pass: while the queue above is not empty, dequeue an item and add it 

into one of the queues below based on the item’s 3rd last digit

Then, items are moved back to the original queue (first all items from the top 

queue, then from the 2nd, 3rd, and the bottom one):
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Radix Sort Example

3023

1030

2222

1322

3100

1133

2310

Array of queues after 

the fourth pass

1030 3100231022221322 30231133

.

1030 3100 23102222 13223023 1133

0

1

2

3

First pass: while the queue above is not empty, dequeue an item and add it 

into one of the queues below based on the item’s first digit

Then, items are moved back to the original queue (first all items from the top 

queue, then from the 2nd, 3rd, and the bottom one):      NOW IN ORDER

13-97



Analysis: Radix Sort

• We’ll count the total number of enqueue 
and dequeue operations

• Each time through the outer for loop:

• In the while loop: n elements are dequeued 
from q and enqueued somewhere in arr: 2*n
operations

• In the inner for loop: a total of n elements 
are dequeued from queues in arr and 
enqueued in q: 2*n operations
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Analysis: Radix Sort

• So, we perform 4*n enqueue and dequeue 
operations each time through the outer loop

• Outer for loop is executed k times, so we have 
4*k*n enqueue and dequeue operations 
altogether

• But k is a constant, so the time complexity for 
radix sort is O(n)

• COMMENT: If the maximum number of digits in 
each number k is considered as a parameter 
describing problem input, then complexity can be 
written in general as O(n*k) or O(n*log(max_val)) 13-99


